38 lines
1.2 KiB
Python
38 lines
1.2 KiB
Python
|
import os
|
|||
|
import pandas as pd
|
|||
|
import numpy as np
|
|||
|
|
|||
|
# 设置包含文件夹的主文件夹路径
|
|||
|
main_folder = 'D:/桌面/fenqu_liziqun/output'
|
|||
|
|
|||
|
# 创建一个空的DataFrame来存储所有文件的数据
|
|||
|
all_data = None
|
|||
|
|
|||
|
# 遍历主文件夹中的所有子文件夹
|
|||
|
for folder_name in os.listdir(main_folder):
|
|||
|
|
|||
|
folder_path = os.path.join(main_folder, folder_name)
|
|||
|
|
|||
|
# 检查文件夹是否存在
|
|||
|
if os.path.isdir(folder_path):
|
|||
|
# 构建Excel文件的完整路径
|
|||
|
excel_file_path = os.path.join(folder_path, 'lixiangjie_and_best_chromosome.xlsx')
|
|||
|
|
|||
|
# 检查Excel文件是否存在
|
|||
|
if os.path.exists(excel_file_path):
|
|||
|
# 读取Excel文件
|
|||
|
df = pd.read_excel(excel_file_path)
|
|||
|
|
|||
|
# 如果all_data为空,直接将df复制给all_data
|
|||
|
if all_data is None:
|
|||
|
all_data = df
|
|||
|
else:
|
|||
|
# 否则,将df中的值逐个加到all_data中
|
|||
|
all_data += df
|
|||
|
|
|||
|
# 计算所有文件中每个位置上的平均值
|
|||
|
average_data = all_data / len(os.listdir(main_folder))
|
|||
|
average_data.to_excel('D:/桌面/分方向MFD实验/13理想解可视化和最好的染色体/lixiangjie_and_best_chromosome4.xlsx', index=False)
|
|||
|
# 打印最终结果
|
|||
|
print(average_data)
|