import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler import numpy as np Initial_partitions=60 # 加载数据 df = pd.read_csv('links_processed.csv', usecols=[0, 1, 2, 3, 4]) df.columns = ['start_lat', 'start_long', 'end_lat', 'end_long', 'speed'] # 计算路段的中心点 df['center_lat'] = ((df['start_lat'] + df['end_lat']) / 2).round(7) df['center_long'] = ((df['start_long'] + df['end_long']) / 2).round(7) # 提取用于聚类的特征 features = df[['center_lat', 'center_long']] # 数据标准化 scaler = StandardScaler() scaled_features = scaler.fit_transform(features) # 运行KMeans算法 kmeans = KMeans(n_clusters=Initial_partitions, n_init=10) # 假设我们想要划分为40个区域 kmeans.fit(scaled_features) # 将聚类结果添加到原始数据中 df['cluster'] = kmeans.labels_ df['cluster'] = df['cluster'] + 1 df=df.to_numpy() links = pd.read_csv('links_processed.csv') links = links.to_numpy() node = np.concatenate((links[:, :2], links[:, 2:4]), axis=0) # np.concatenate 函数会将这两个子数组沿着轴 0 连接起来; # axis 是指在数组操作时沿着哪个轴进行操作。当axis=0时,表示在第一个维度上进行拼接操作。这里就是纵轴 # 这里是给道路起点和终点标注序列,也就是路口表注序列,因为一个路口可以是好几个道路的起点或终点,所以同一路口就会有同样的标记 noi = 1 node = np.hstack((node, np.zeros((len(node), 1)))) for i in range(node.shape[0]): # node.shape[0] 是指 node 数组的第一维大小,即 node 数组的行数 a = np.where(node[:i, 0] == node[i, 0])[0] b = np.where(node[:i, 1] == node[i, 1])[0] c = np.intersect1d(a, b) # intersect1d 返回两个数组的交集 if c.size > 0: x = c.shape[0] y = 1 else: x, y = 0, 1 # 在 node 数组的最后添加一列全为0的列,并将添加后的新数组重新赋值给 node if x > 0 and y > 0: node[i, 2] = node[min(c), 2] # 如果c是矩阵,则min(A)是包含每一列的最小值的行向量 else: node[i, 2] = noi noi += 1 node = np.concatenate((node[:int(len(node) / 2), 2].reshape(-1, 1), node[int(len(node) / 2):, 2].reshape(-1, 1)), axis=1) # 这里的links多加了一行才能yanlinks,但这样yanlinks就不对了 links = np.hstack((links, np.zeros((len(links), 1)))) links = np.hstack((links, np.zeros((len(links), 1)))) links = np.hstack((links, np.zeros((len(links), 1)))) yanlinks = np.concatenate((node, links[:, [5, 6, 7, 4, 0, 1, 2, 3]], np.zeros((len(links), 4))), axis=1) yanlinks[:, 4] = np.arange(1, len(yanlinks) + 1) road = np.arange(1, node.shape[0] + 1) adjacency = np.zeros((len(road), len(road))) # 初始化分区 for i in range(len(road)): temp1 = np.where(node[:, 0] == node[i, 0])[0] # 找出第一列每个数字在第一列出现的位置 temp2 = np.where(node[:, 1] == node[i, 0])[0] # 找出第一列每个数字在第二列出现的位置 temp3 = np.where(node[:, 0] == node[i, 1])[0] # 找出第二列每个数字在第一列出现的位置 temp4 = np.where(node[:, 1] == node[i, 1])[0] # 找出第二列每个数字在第二列出现的位置 temp = np.unique(np.intersect1d(np.arange(i + 1, node.shape[0]), np.concatenate((temp1, temp2, temp3, temp4)))) if len(temp) > 0: adjacency[i, temp] = 1 adjacency[temp, i] = 1 row_sums = np.sum(adjacency, axis=1) # 找到全零行的索引 zero_row_indices = np.where(row_sums == 0)[0] yanlinks[:, 3] = links[:, 9] yanlinks[:, 10] = df[:, 7] yanlinks = yanlinks[yanlinks[:, 10] != 0] yanlinks = yanlinks[yanlinks[:, 10] != -1, :] road = np.unique(np.concatenate((yanlinks[:, 1], yanlinks[:, 0]), axis=0)) adjacency = np.zeros((len(road), len(road))) adregion = np.zeros((int(np.max(yanlinks[:, 4])), int(np.max(yanlinks[:, 4])))) for i in range(len(yanlinks[:, 0])): temp1 = np.where(node[:, 0] == node[i, 0])[0] temp2 = np.where(node[:, 1] == node[i, 0])[0] temp3 = np.where(node[:, 0] == node[i, 1])[0] temp4 = np.where(node[:, 1] == node[i, 1])[0] temp = np.unique(np.intersect1d(np.arange(i + 1, node.shape[0]), np.concatenate((temp1, temp2, temp3, temp4)))) if len(temp) > 0: adregion[i, temp] = 1 adregion[temp, i] = 1 # adregion矩阵表示路段之间的邻接关系 np.save('adregion.npy', adregion) # 给adregion矩阵乘上权重(道路的分组编号) for i in range(len(yanlinks[:, 1])): # print(adregion[:, int(yanlinks[i, 4])]) # print(int(yanlinks[i, 10])) adregion[:, int(yanlinks[i, 4]) - 1] = adregion[:, int(yanlinks[i, 4]) - 1] * int(yanlinks[i, 10]) subregion_adj = np.zeros((Initial_partitions, Initial_partitions)) # 计算adregion中的每个元素出现的频率(判断是强相关还是弱相关) for i in range(len(adregion[:, 1])): a = adregion[i, :] a = np.unique(a) a = a[a != 0] if a.size > 0: x = 1 y = a.shape[0] else: x, y = 0, 1 if y > 1: for j in range(len(a)): for u in range(len(a)): if j != u: # subregion_adj表示子区域的邻接关系,其中数值的大小表示区域之间的相关程度 subregion_adj[int(a[j]) - 1, int(a[u]) - 1] += 1 subregion_adj[int(a[u]) - 1, int(a[j]) - 1] += 1 # 计算后存到directed_adjacency_matrix里 directed_adjacency_matrix = subregion_adj.copy() # 对于子区域相关程度处于弱相关的邻接关系进行忽略 min_value = np.min(np.max(subregion_adj, axis=0)) - 2 subregion_adj[subregion_adj < min_value] = 0 subregion_adj[subregion_adj > 1] = 1 directed_adjacency_matrix[directed_adjacency_matrix > 1] = 1 unique_values, unique_indices = np.unique(yanlinks[:, 10], return_index=True) Asb = 0 # 计算平均相似性 for i in unique_values: wu = np.where(subregion_adj[int(i) - 1, :] == 1) # wu是元组 smrjj_divide_smrjj_ = 0 # 0726 wu_1 = wu[0] for j in wu_1: selected_values_list = [yanlinks[yanlinks[:, 10] == j + 1][:, 5]] # 主区域邻接的一个区域速度均值与方差 selected_values = np.array(selected_values_list) average = np.mean(selected_values) variance = np.var(selected_values) # 计算主区域的速度均值与方差 selected_values1 = yanlinks[yanlinks[:, 10] == i][:, 5] average1 = np.mean(selected_values1) variance1 = np.var(selected_values1) smrjj = 2 * variance1 # jj情况下的smrjj smrjj_ = variance + variance1 + (average - average1) ** 2 smrjj_divide_smrjj_one = smrjj / smrjj_ smrjj_divide_smrjj_ += smrjj_divide_smrjj_one num_elements = len(wu[0]) # 计算分母NE Asb_one = smrjj_divide_smrjj_ / num_elements Asb += Asb_one Asb=Asb/Initial_partitions print('Asb=', Asb) Tvb = 0 for i in unique_values: selected_values = yanlinks[yanlinks[:, 10] == i][:, 5] variance = np.var(selected_values) Tvb += variance print('Tvb=', Tvb) # np.save('subregion_adj.npy', subregion_adj) # np.save('yanlinks.npy', yanlinks)