72 lines
2.8 KiB
Python
72 lines
2.8 KiB
Python
# -*- coding: utf-8 -*-
|
||
"""Demo.
|
||
|
||
min f1 = -25 * (x1 - 2)**2 - (x2 - 2)**2 - (x3 - 1)**2 - (x4 - 4)**2 - (x5 - 1)**2
|
||
min f2 = (x1 - 1)**2 + (x2 - 1)**2 + (x3 - 1)**2 + (x4 - 1)**2 + (x5 - 1)**2
|
||
s.t.
|
||
x1 + x2 >= 2
|
||
x1 + x2 <= 6
|
||
x1 - x2 >= -2
|
||
x1 - 3*x2 <= 2
|
||
4 - (x3 - 3)**2 - x4 >= 0
|
||
(x5 - 3)**2 + x4 - 4 >= 0
|
||
x1,x2,x3,x4,x5 ∈ {0,1,2,3,4,5,6,7,8,9,10}
|
||
"""
|
||
import numpy as np
|
||
|
||
import geatpy as ea
|
||
|
||
|
||
class MyProblem(ea.Problem): # 继承Problem父类
|
||
|
||
def __init__(self, M=2):
|
||
name = 'MyProblem' # 初始化name(函数名称,可以随意设置)
|
||
Dim = 5 # 初始化Dim(决策变量维数)
|
||
maxormins = [1] * M # 初始化maxormins(目标最小最大化标记列表,1:最小化该目标;-1:最大化该目标)
|
||
varTypes = [1] * Dim # 初始化varTypes(决策变量的类型,0:实数;1:整数)
|
||
lb = [0] * Dim # 决策变量下界
|
||
ub = [10] * Dim # 决策变量上界
|
||
lbin = [1] * Dim # 决策变量下边界(0表示不包含该变量的下边界,1表示包含)
|
||
ubin = [1] * Dim # 决策变量上边界(0表示不包含该变量的上边界,1表示包含)
|
||
# 调用父类构造方法完成实例化
|
||
ea.Problem.__init__(self,
|
||
name,
|
||
M,
|
||
maxormins,
|
||
Dim,
|
||
varTypes,
|
||
lb,
|
||
ub,
|
||
lbin,
|
||
ubin)
|
||
|
||
def evalVars(self, Vars): # 目标函数
|
||
x1 = Vars[:, [0]]
|
||
x2 = Vars[:, [1]]
|
||
x3 = Vars[:, [2]]
|
||
x4 = Vars[:, [3]]
|
||
x5 = Vars[:, [4]]
|
||
f1 = -25 * (x1 - 2)**2 - (x2 - 2)**2 - (x3 - 1)**2 - (x4 - 4)**2 - (
|
||
x5 - 1)**2
|
||
f2 = (x1 - 1)**2 + (x2 - 1)**2 + (x3 - 1)**2 + (x4 - 1)**2 + (x5
|
||
- 1)**2
|
||
# # 利用罚函数法处理约束条件
|
||
# idx1 = np.where(x1 + x2 < 2)[0]
|
||
# idx2 = np.where(x1 + x2 > 6)[0]
|
||
# idx3 = np.where(x1 - x2 < -2)[0]
|
||
# idx4 = np.where(x1 - 3*x2 > 2)[0]
|
||
# idx5 = np.where(4 - (x3 - 3)**2 - x4 < 0)[0]
|
||
# idx6 = np.where((x5 - 3)**2 + x4 - 4 < 0)[0]
|
||
# exIdx = np.unique(np.hstack([idx1, idx2, idx3, idx4, idx5, idx6])) # 得到非可行解的下标
|
||
# f1[exIdx] = f1[exIdx] + np.max(f1) - np.min(f1)
|
||
# f2[exIdx] = f2[exIdx] + np.max(f2) - np.min(f2)
|
||
# 利用可行性法则处理约束条件
|
||
CV = np.hstack([
|
||
2 - x1 - x2,
|
||
x1 + x2 - 6,
|
||
-2 - x1 + x2,
|
||
x1 - 3 * x2 - 2, (x3 - 3)**2 + x4 - 4,
|
||
4 - (x5 - 3)**2 - x4
|
||
])
|
||
f = np.hstack([f1, f2])
|
||
return f, CV |