Allenfenqu/variance.py

201 lines
8.5 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import numpy as np
import pandas as pd
import sklearn
import Code_bus_correlation
# import adregionf
import fun
import xfun
import mutationnew
import test
import TOPSIS
import crossnew
import traceback
import statistics
zhong = 8
for zhong in [zhong]:
for chu in [zhong * 5]:
pass
df = pd.read_excel('links.xls')
links = df.to_numpy()
df = pd.read_excel('stationid.xls')
stationid = df.to_numpy()
df = pd.read_excel('stationidwan.xls')
stationid = df.to_numpy()
# for chuu in range(1, 17):
# for dic in range(1):
# tic()
# chu = 10
# zhong = 2
# 给道路起点和终点标注序列eg从1到500
# 因为一个路口可以是好几个道路的起点或终点,所以同一路口就会有同样的标记
node = np.concatenate((links[:, :2], links[:, 2:4]), axis=0) # np.concatenate 函数会将这两个子数组沿着轴 0 连接起来;
# axis 是指在数组操作时沿着哪个轴进行操作。当axis=0时表示在第一个维度上进行拼接操作。这里就是纵轴
noi = 1
node = np.hstack((node, np.zeros((len(node), 1))))
print(node.shape[0])
for i in range(node.shape[0]): # node.shape[0] 是指 node 数组的第一维大小,即 node 数组的行数
print(i)
# node[:i, 0] 表示从 node 数组的第一行到第 i-1 行的所有行的第一列构成的数组
# np.where() 函数返回一个包含下标的元组,后面的[0]就代表返回第一个元素的下标
a = np.where(node[:i, 0] == node[i, 0])[0]
b = np.where(node[:i, 1] == node[i, 1])[0]
c = np.intersect1d(a, b) # intersect1d 返回两个数组的交集
if c.size > 0:
x = c.shape[0]
y = 1
else:
x, y = 0, 1
# 在 node 数组的最后添加一列全为0的列并将添加后的新数组重新赋值给 node
if x > 0 and y > 0:
node[i, 2] = node[min(c), 2] # 如果c是矩阵则min(A)是包含每一列的最小值的行向量
else:
node[i, 2] = noi
noi += 1
node = np.concatenate((node[:int(len(node)/2), 2].reshape(-1, 1), node[int(len(node)/2):, 2].reshape(-1, 1)), axis=1)
np.savetxt('node.txt', node)
# 这里的links多加了一行才能yanlinks但这样yanlinks就不对了
links = np.hstack((links, np.zeros((len(links), 1))))
links = np.hstack((links, np.zeros((len(links), 1))))
links = np.hstack((links, np.zeros((len(links), 1))))
yanlinks = np.concatenate((node, links[:, [5,6,7,4,0,1,2,3]], np.zeros((len(links), 4))), axis=1)
yanlinks[:,4] = np.arange(1, len(yanlinks)+1)
road = np.arange(1, node.shape[0] + 1)
adjacency = np.zeros((len(road), len(road)))
#初始化分区
for i in range(len(road)):
temp1 = np.where(node[:, 0] == node[i, 0])[0] # 找出第一列每个数字在第一列出现的位置
temp2 = np.where(node[:, 1] == node[i, 0])[0] # 找出第一列每个数字在第二列出现的位置
temp3 = np.where(node[:, 0] == node[i, 1])[0] # 找出第二列每个数字在第一列出现的位置
temp4 = np.where(node[:, 1] == node[i, 1])[0] # 找出第二列每个数字在第二列出现的位置
temp = np.unique(np.intersect1d(np.arange(i + 1, node.shape[0]), np.concatenate((temp1, temp2, temp3, temp4))))
if len(temp) > 0:
adjacency[i, temp] = 1
adjacency[temp, i] = 1
from sklearn.cluster import KMeans
N = chu # 设置聚类数目
# 利用 K-Means 算法对 yanlinks 矩阵的第 7 列和第 8 列(即经度和纬度)进行聚类,
# 将样本分成 N 类idx是一个N x 2的矩阵其中N是聚类数目。
# idx的每一行就是一个聚类中心其中第一列是该中心的经度第二列是该中心的纬度。
# 在计算每个点到聚类中心的距离时就需要用到idx的值。
cur, idx = KMeans(n_clusters=N).fit(yanlinks[:, [6, 7]]).labels_, KMeans(n_clusters=N).fit(yanlinks[:, [6, 7]]).cluster_centers_
# 计算每个点到聚类中心的距离
dis = 111000 * np.sqrt((yanlinks[:, 6] - idx[:, 0].reshape(N, 1)) ** 2 + (yanlinks[:, 7] - idx[:, 1].reshape(N, 1)) ** 2)
# 找到每个点最近的聚类中心mm是最小值nn是最小值在向量的索引
mm, nn = np.min(dis, axis=1, keepdims=True), np.argmin(dis, axis=1)
data = links[:, 4] # links第五行是路的长度
if data.size > 0:
m = data.shape[0]
n = 1
else:
m, n = 0, 1
pattern = np.zeros((m, n)) # zeros(m,n+1)返回由零组成的m×(n+1)数组
pattern[:, 0] = data # 前n列为data中的数据
pattern = np.hstack((pattern, np.zeros((len(pattern), 1))))
center = np.zeros((N, n)) # 初始化聚类中心
pattern[:, :n] = data.reshape(-1, n)
# 初始化聚类中心
for x in range(0,N):
center = np.hstack((center, np.zeros((len(center), 1))))
center[x, 1] = nn[x]
center[x, 0] = data[int(center[x, 1])]
pattern[int(center[x, 1]), 1] = x
# 初始化距离和计数
distance = np.zeros(N)
num = np.zeros(N)
# 初始化新的聚类中心
new_center = np.zeros((N, n))
mb = 10
while mb > 1:
print(mb)
for x in range(0, N - 1): # x表示当前聚类的编号
yisou = adjacency[np.where(pattern[:, 1] == x + 1)[0], :]
bound = np.where(np.sum(yisou, axis=0) > 0)[0]
yisou = np.where(pattern[:, 1] > 0)[0]
bound = np.setdiff1d(bound, yisou) # bound 是一个向量,表示与聚类 x 相关的未被分配到聚类中的道路的编号。
yisou = np.where(pattern[:, 1] == x + 1)[0] # 这里的yisou表示已经被分配到的道路编号
bus = []
# for y=1:length(yisou)
for y in range(len(yisou)): # 变量 y 用于遍历所有被分配到第 x 个聚类的节点,并且在每次迭代中根据索引 y 从 stationid 矩阵中获取相应的信息。
# bus=[bus;stationid(find(stationid(:,6)==yisou(y)),7)];
for yicifangwen in stationid[:, 5]: # Python不能用矩阵来和一个数值比较
if yicifangwen == yisou[y]:
yicifangwendesuoying = np.where(stationid[:, 5] == yicifangwen)[0]
for dengyuyisourow in yicifangwendesuoying:
extendbus = stationid[dengyuyisourow, 6]
bus.append(extendbus)
break
bouvar = np.zeros((len(bound), 2))
for adad in range(len(bound)):
# if var([bus;stationid(find(stationid(:,6)==bound(y)),7)])>0这里开始
#这里result要改
# result只有一个数的时候是不能算方差的
abaac = variancediy((np.concatenate([bus, stationid[stationid[:, 5] == bound[adad], 6]])).tolist())
if len(np.concatenate([bus, stationid[stationid[:, 5] == bound[adad], 6]])) > 1 and abaac > 0:
# np.var(np.concatenate((bus, stationid[stationid[:, 6] == bound[adad], 6]有可能为无穷大,当这里的两个变量为空集时
# bus 和stationid[stationid[:, 6] == bound[adad]不能直接和零比较,因为他们不是数
# pattern[yisou, 0]和pattern[bound[adad], 0]不是一个数据类型
yaozhuanchenfloat = np.float64(pattern[yisou-1, 0]) # 这里没问题!!!!!!!!!!!!
bouvar[adad, 0] = variancediy((yaozhuanchenfloat, pattern[bound[adad]-1, 0]))* variancediy((np.concatenate((bus, stationid[stationid[:, 5] == bound[adad], 6]))).tolist())
else:
print(type(bus))
if variancediy(bus)> 0: # if var(bus)>0%已分配道路的速度方差
# print(pattern[yisou, 0])
yaozhuanchenfloat1 = np.float64(pattern[yisou-1, 0]) # 这里没问题!!!!
bouvar[adad, 0] = variancediy((yaozhuanchenfloat1, pattern[bound[adad]-1, 0])) + variancediy(bus)
else:
yaozhuanchenfloat2 = np.float64(pattern[yisou-1, 0])
bouvar[adad, 0] = variancediy((yaozhuanchenfloat2, pattern[bound[adad]-1, 0]))
bouvar[adad, 1] = 111000 * np.sqrt(np.sum((yanlinks[yanlinks[:, 4] == bound[adad], 6:8] - idx[x-1 , :]) ** 2))
if bouvar.shape[0] > 1:
a, b = TOPSIS(bouvar) # TOPSIS是改好的
else:
b = 1
mb = np.sum(pattern[:, 1] == 0)