LISHUZUOXUN_yangjiang/Exercise3/tricep_dip.py

229 lines
11 KiB
Python

import numpy as np
from MCamera.mp_camera import *
from MCamera.camera import *
from Database.manager_database import *
from score_doc import get_fin_score
from .base_exercise import BaseExercise
class Tricep_dip_1(BaseExercise):
def __init__(self, info, statistic_time=900, camera=None):
super().__init__(info, statistic_time, camera=camera)
# 个数统计
self.bar = None
self.per = None
self.count = 0
# 当前状态
self.heel = 0
# 动作持续帧数
self.time_0 = 0
self.time_2 = 0
self.time_1 = 0
self.time = 0
self.starttime = 0
# 开始标志
self.form = 0
# 状态反馈
self.pre_pos = 0
self.sta_time = time.time()
self.feedback = "开始"
self.exercise_type = "双杠臂屈伸"
self.end_test = 0
self.had_done = False
self.sign = 0
self.readiness_state = 0
# 摆动状态
self.state = 1
# 初始化
self.initial_wrist_1_y = 0
self.initial_wrist_2_y = 0
# 双杠臂屈伸参数
self.corner = (0, 480, 200, 440)
MediapipeAlgorithmPlugin.set_corner(corner=self.corner)
MediapipeAlgorithmPlugin.set_config(config=self.config)
def get_result(self):
# 人员年龄
age = self.info.get(AGE)
# 人员性别
gender = "woman" if self.info.get(GENDER) == "" else "man"
# score = get_fin_score.Military(gender, int(age),
# integratedProjectResult=int(self.count)).IntegratedProjectScoreEvaluation()
score = int(self.count)
if self.starttime != 0:
this_time = time.time()
count_time = this_time - self.starttime
else:
count_time = 0
result = {
"count": int(self.count),
"score": score,
"had_done": self.had_done,
'countdown': count_time
}
return result
def speak_counting(self, counting_times, name):
self.speak_driver.start()
self.speak_driver.speed_control(200)
self.speak_driver.volume_control(1)
self.speak_driver.add_speak("考试人员{}".format(name))
self.speak_driver.add_speak(f"考试项目{self.exercise_type}")
def display(self, img):
cv2.rectangle(img, (self.corner[2], self.corner[0]), (self.corner[3], self.corner[1]), (0, 255, 0), 2)
# 绘制状态条
cv2.rectangle(img, (650 - 100, 60), (650 - 80, 282), (255, 255, 255), 2)
if self.dir == 0:
self.detector.drawPoint_more(img, [9, 11, 13, 19, 25], bias_x=self.corner[2], bias_y=self.corner[0])
self.detector.drawPoint_more(img, [10, 12, 14, 20, 26], bias_x=self.corner[2], bias_y=self.corner[0])
elif self.dir == 1:
self.detector.drawPoint_more(img, [9, 11, 13, 19, 25], bias_x=self.corner[2], bias_y=self.corner[0])
elif self.dir == 2:
self.detector.drawPoint_more(img, [10, 12, 14, 20, 26], bias_x=self.corner[2], bias_y=self.corner[0])
if self.bar and self.per:
cv2.rectangle(img, (650 - 98, int(self.bar)), (650 - 82, 280), (102, 106, 233),
cv2.FILLED)
cv2.putText(img, f'{int(self.per)}%', (650 - 125, 320), cv2.FONT_HERSHEY_PLAIN, 2,
(255, 255, 255), 2)
# 绘制计数器
cv2.rectangle(img, (0, 480 - 120), (120, 480), (102, 106, 233), cv2.FILLED)
cv2.putText(img, str(int(self.count)), (10, 480 - 35), cv2.FONT_HERSHEY_PLAIN, 5,
(255, 255, 255), 5)
# 展示状态反馈
cv2.rectangle(img, (640 - 160, 0), (640, 50), (102, 106, 233), cv2.FILLED)
img_output = self.cv2_img_add_text(img, self.feedback, 640 - 120, 5, (255, 255, 255), 38)
return img_output
def analysis(self, frame):
catch_time = frame[CATCH_TIME]
if catch_time < self.start_cal_time:
return
img = frame[FRAME_DAT]
lm_list = frame[MP_RESULT]
self.detector.set_result(lm_list)
if len(lm_list) != 0:
elbow_1 = self.detector.findAngle(img, 11, 13, 15)
elbow_2 = self.detector.findAngle(img, 12, 14, 16)
shoulder_1 = self.detector.findAngle(img, 13, 11, 23)
shoulder_2 = self.detector.findAngle(img, 14, 12, 24)
eye_1_y = self.detector.findPosition(img, False)[3][2]
eye_2_y = self.detector.findPosition(img, False)[6][2]
elbow_1_x = self.detector.findPosition(img, False)[13][1]
elbow_1_y = self.detector.findPosition(img, False)[13][2]
elbow_2_x = self.detector.findPosition(img, False)[14][1]
elbow_2_y = self.detector.findPosition(img, False)[14][2]
wrist_1_x = self.detector.findPosition(img, False)[15][1]
wrist_2_x = self.detector.findPosition(img, False)[16][1]
wrist_1_y = self.detector.findPosition(img, False)[15][2]
wrist_2_y = self.detector.findPosition(img, False)[16][2]
heel_y = self.detector.findPosition(img, False)[27][2]
shoulder_1_x = self.detector.findPosition(img, False)[11][1]
shoulder_2_x = self.detector.findPosition(img, False)[12][1]
shoulder_1_y = self.detector.findPosition(img, False)[11][2]
shoulder_2_y = self.detector.findPosition(img, False)[12][2]
vis_shoulder_1 = self.detector.findPosition(img, False)[11][4]
vis_shoulder_2 = self.detector.findPosition(img, False)[12][4]
# 成功概率
self.per = np.interp(elbow_1, (157, 100), (0, 100))
# 显示进度栏
self.bar = np.interp(elbow_1, (157, 100), (280, 62))
if self.pre_pos == 0:
self.speak_driver.add_speak("双手握杠后,进入准备状态")
self.pre_pos = 1
if self.form == 0 and self.pre_pos == 1:
if self.readiness_state == 0:
if shoulder_1 > 70 and shoulder_2 > 70:
self.readiness_state = 1
self.heel = heel_y
self.speak_driver.add_speak("上杠,听到提示声后开始考试")
if self.readiness_state == 1:
if (elbow_1 > 150 or elbow_2 > 150) and eye_1_y < wrist_1_y and eye_2_y < wrist_2_y and (shoulder_1 < 45 or shoulder_2 < 45) and heel_y < self.heel - 30:
self.time_0 += 1
if self.time_0 > 20:
if vis_shoulder_1 > 0.8 and vis_shoulder_1 > vis_shoulder_2:
self.time_1 += 1
if self.time_1 > 3:
self.dir = 1
self.sign = 1
self.time_1 = 0
self.time_2 = 0
elif vis_shoulder_2 > 0.8 and vis_shoulder_1 < vis_shoulder_2:
self.time_2 += 1
if self.time_2 > 3:
self.dir = 2
self.sign = 1
self.time_2 = 0
self.time_1 = 0
if self.sign == 1:
self.form = 1
beep()
self.starttime = time.time()
self.initial_wrist_1_y = wrist_1_y
self.initial_wrist_2_y = wrist_2_y
if self.dir == 1 and self.pre_pos == 1 and self.form == 1:
shoulder_angle = self.detector.findIncludedAngle(elbow_1_x, elbow_1_y, wrist_1_x, wrist_1_x)
# if wrist_1_y - self.initial_wrist_1_y > 50 or heel_y > self.heel- 5:
# self.end_test += 1
# if self.end_test > 10:
# self.speak_driver.add_speak("双手已离开双杠,考试结束")
# self.pre_pos = 2
# self.had_done = True
if elbow_1 <= 95 and shoulder_1_y >= elbow_1_y and wrist_1_y - self.initial_wrist_1_y < 50:
self.feedback = "上升"
if self.state == 1:
self.time += 1
if self.time > 2:
self.count += 0.5
self.state = 0
self.time = 0
if elbow_1 >= 146 and shoulder_1_y < elbow_1_y and shoulder_1_y < self.initial_wrist_1_y - 30 and shoulder_angle > 30 and self.count > 0 and wrist_1_y - self.initial_wrist_1_y < 50:
self.feedback = "下落"
if self.state == 0:
self.time += 1
if self.time > 2:
self.count += 0.5
self.state = 1
self.end_test = 0
self.speak_driver.speed_control(400)
self.speak_driver.add_speak("{}".format(int(self.count)))
elif self.dir == 2 and self.pre_pos == 1 and self.form == 1:
shoulder_angle = self.detector.findIncludedAngle(elbow_2_x, elbow_2_y, wrist_2_x, wrist_2_x)
# if wrist_2_y - self.initial_wrist_2_y > 50 or heel_y > self.heel - 5:
# self.end_test += 1
# if self.end_test > 10:
# self.speak_driver.add_speak("双手已离开双杠,考试结束")
# self.pre_pos = 2
# self.had_done = True
if elbow_2 <= 95 and shoulder_2_y >= elbow_2_y and wrist_2_y - self.initial_wrist_2_y < 50:
self.feedback = "上升"
if self.state == 1:
self.time += 1
if self.time > 2:
self.count += 0.5
self.state = 0
self.time = 0
if elbow_2 >= 146 and shoulder_2_y < elbow_2_y and shoulder_2_y < self.initial_wrist_2_y - 30 and shoulder_angle > 30 and self.count > 0 and wrist_2_y - self.initial_wrist_2_y < 50:
self.feedback = "下落"
if self.state == 0:
self.time += 1
if self.time > 2:
self.count += 0.5
self.state = 1
self.end_test = 0
self.speak_driver.speed_control(400)
self.speak_driver.add_speak("{}".format(int(self.count)))